
Electron Transport Chain & Oxidative Phosphorylation

Electron Transport Chain & Oxidative Phosphorylation

- The third stage of cellular respiration.
- NADH resulting from TCA cycle activity can be used:
- 1. For reductive biosynthesis.
- To supply the energy for ATP synthesis via oxidative phosphorylation.

Redox reactions

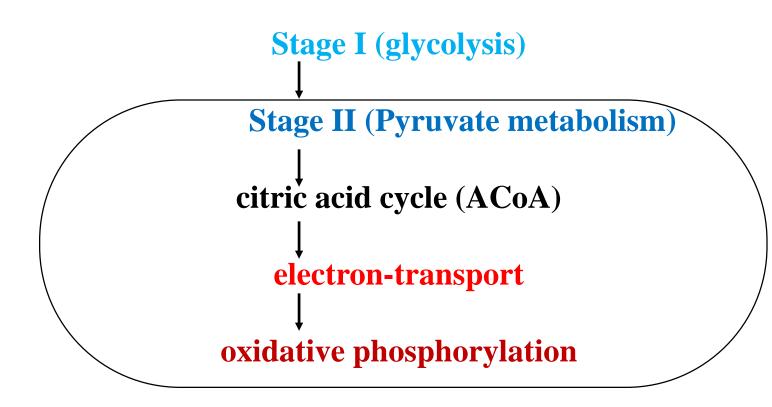
Coupled Redox Reaction

involve the transfer of electrons from one chemical species to another.

<u>e.g.</u>

Oxidation of NADH by the electron transport chain:

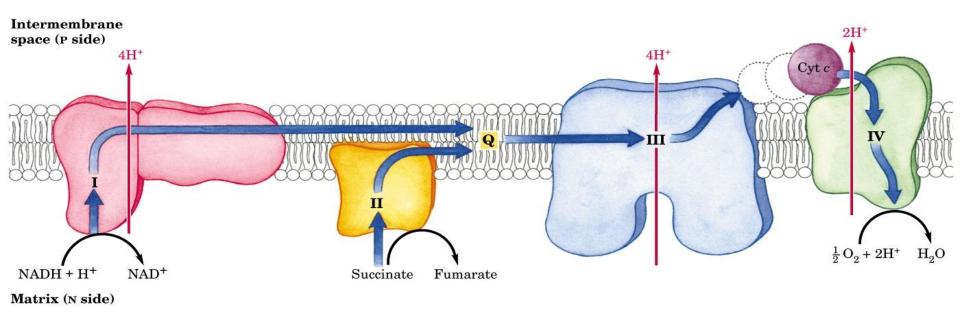
NADH oxidation has the potential for driving the synthesis of a number of ATPs.


NADH + $\frac{1}{2}O_2$ + H⁺ \rightarrow NAD⁺ + H₂O

 \rightarrow \rightarrow synthesis of ATPs.

NADH \rightarrow 2.5 ATP FADH2 \rightarrow 1.5 ATP

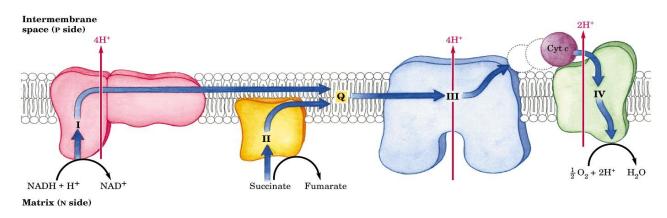
Mitochondrial electron transport


• Stage I and II of carbohydrate catabolism converge at the mitochondria.

Oxidative Phosphorylation

- > The culmination of energy-yielding metabolism in aerobic organisms.
- All oxidation steps in the degradation of <u>carbohydrates</u>, <u>fats</u>, & <u>amino acids</u> *converge* at this final stage of cellular respiration, in which the energy of oxidation drives the *synthesis of ATP*.
- Occurs in mitochondria
- Involves the reduction of O₂ to H₂O with electrons donated by NADH & FADH₂.
- Consists of a series of sequentially acting electron carriers, most of which are integral proteins capable of accepting & donating either one or two electrons.

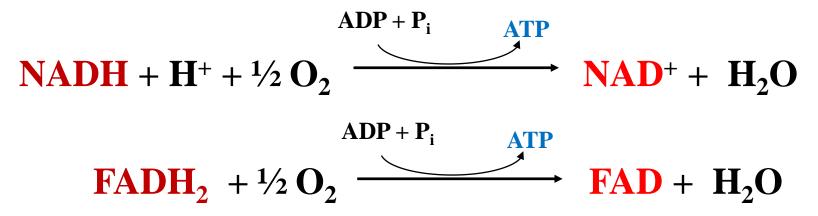
Respiratory Chain: Summary of the flow of electrons & protons.



Respiratory Chain: summary of the flow of electrons & protons.

- Electrons reach Q through complexes I & II.
- QH_2 serves as a mobile carrier of electrons & protons, which passes electrons to complex III, which passes them to another mobile connecting link (cytochrome c).
- Finally, complex IV transfer electrons to O₂.

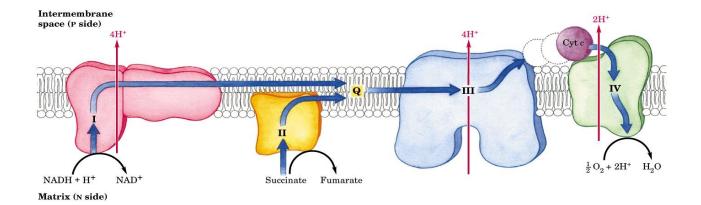
Electron-transport chain


- Composed of four large protein complexes.
- Complex I NADH-Coenzyme Q oxidoreductase
- Complex II Succinate-Coenzyme Q oxidoreductase
- Complex III Coenzyme Q-Cytochrome c oxidoreductase
- **Complex IV** Cytochrome c oxidase
- Many of the components are integral membrane proteins with groups to move electrons.

Oxidative Phosphorylation $2H^+$ $4H^+$ Cyt c $4H^+$ Intermembrane + space IV + J III II + Ι H_2C $\frac{1}{2}O_2 + 2H^+$ Fumarate Succinate $ADP + P_i$ Fo $NADH + H^+$ NAD⁺ Matrix \mathbf{F}_1 ATP H⁺ Chemical Electrical ATP potential potential synthesis ΔpH driven by $\Delta \psi$ (inside (inside proton-motive alkaline) force negative)

Electron-transport and oxidative phosphorylation

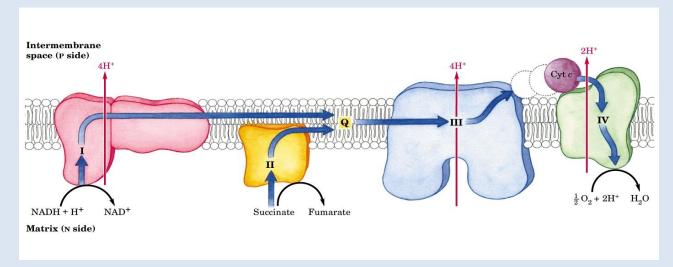
• Recycling is accomplished by stepwise oxidation and transfer of electrons to oxygen.

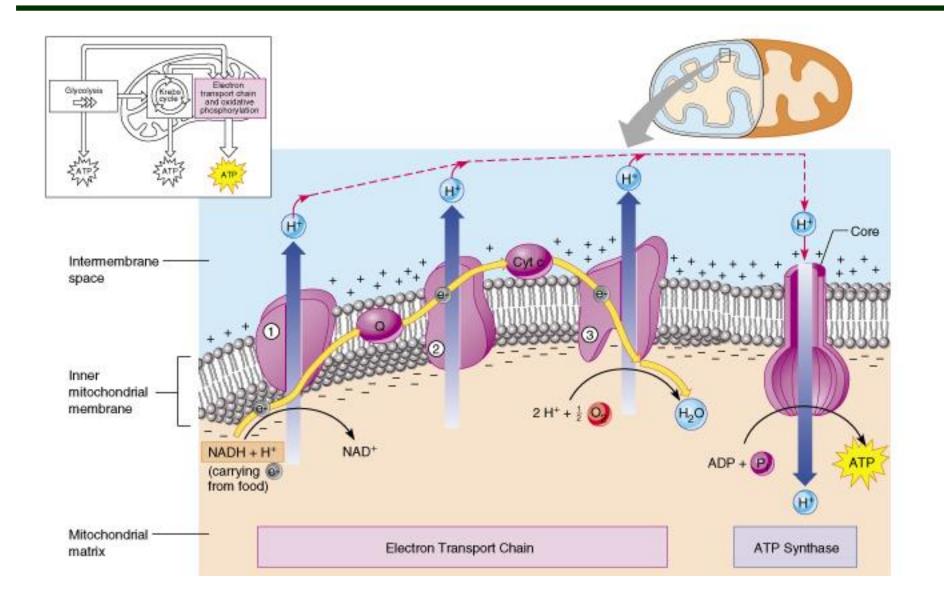


NAD⁺ and FAD are then made available for additional oxidative metabolism. The energy released during electron transport is coupled to ATP

synthesis.

The Electron Transport Chain


- A series of carrier molecules that are, in turn, oxidized and reduced as electrons are passed down the chain.
- <u>Aerobic respiration</u>: The final electron acceptor in the electron transport chain is molecular oxygen (O₂).


The Electron Transport Chain

- Energy released can be used to produce ATP by <u>chemiosmosis</u> ??
- The chemiosmotic process whereby the <u>movement of substances (e-)</u> across a membrane is coupled to <u>chemical reactions</u>
 - Coupling <u>oxidation</u> to <u>phosphorylation</u>
 - Electron transfer is used to pump hydrogen ions into the intermembrane space (3 pumps)
 - A steep <u>diffusion gradient</u> across the membrane results
 - When hydrogen ions flow back across the membrane through ATP synthase, energy is captured and attaches phosphate groups to ADP to make ATP.

(Flow of H⁺ down gradient powers ATP formation)

Coupling of electron-transport with ATP synthesis

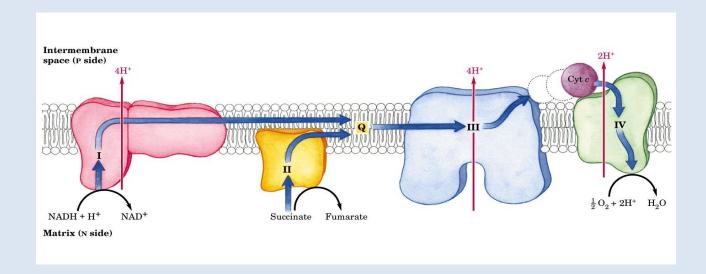
ATP

<u>https://www.youtube.com/watch?v=39HTpUG</u>
<u>1MwQ</u>

<u>https://www.youtube.com/watch?v=LQmTKxI</u>
<u>4Wn4</u>

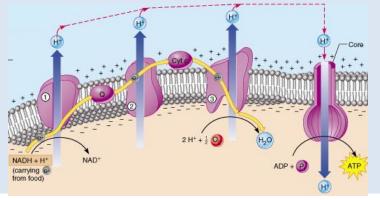
For oxidative phosphorylation to proceed

<u>1. High concentration of protons must be</u> developed on the outside of the inner membrane $---\rightarrow$ creates proton gradient.


2. The inner mitochondrial membrane must be physically intact $---\rightarrow$

protons enter matrix only through ATP synthase.

Inhibitors of Oxidative Phosphorylataion (Uncouplers)


- 1. Inhibitors of electron transport at specific sites in the electron transport assembly,
- > antimycin A is a specific inhibitor of cytochrome b.

in the presence of antimycin A \rightarrow cytochrome b can be reduced but not oxidized

Inhibitors of Oxidative Phosphorylataion (Uncouplers)

- 2. stimulate electron transport by <u>discharging the proton gradient</u> (Uncouplers).
- Oxidation occurs but no phosphorylation
 - Electrons are transferred to oxygen and water is produced but there is no ATP produced
- > pH gradients are disrupted across the membrane
 - Dinitrophenolate anion (dinitrophenol, DNP). react with protons in the intermediate space thus reducing the proton concentration
 - Antibiotics as gramicidin A and valinomycin are ionophores creating a channel through which ions as H+, Na+ & K+ pass through the membrane. Oxidation and electron transfer occurs without phosphorylation

Uncoupling of electron-transport and oxidative phosphorylation

- In some special cases, the coupling of the two processes can be disrupted.
- Large amounts of O₂ are consumed but no ATP is produced.
- Used by newborn animals and hibernating mammals.
- Occurs in 'brown fat'- dark color due to high levels of mitochondria which contain <u>thermogenin</u> (uncoupling protein).

Thermogenin allows the release of energy as heat instead of ATP.

table 19-4

Type of interference	Compound*	Target/mode of action
Inhibition of electron transfer	Cyanide Carbon monoxide	Inhibit cytochrome oxidase
	Antimycin A	Blocks electron transfer from cytochrome b to cytochrome c_1
	Myxothiazol Rotenone Amytal Piericidin A	Prevent electron transfer from Fe-S center to ubiquinone
	DCMU	Competes with Q _B for binding site in PSII
Inhibition of ATP synthase	Aurovertin	Inhibits F ₁
	Oligomycin) Venturicidin }	Inhibit F_o and CF_o
	DCCD	Blocks proton flow through F_o and CF_o
Uncoupling of phosphorylation from electron transfer	FCCP }	Hydrophobic proton carriers
	Valinomycin	K ⁺ ionophore
	Thermogenin	Forms proton-conducting pores in inner membrane of brown fat mitochondria
Inhibition of ATP-ADP exchange	Atractyloside	Inhibits adenine nucleotide translocase

Some Agents That Interfere with Oxidative Phosphorylation or Photophosphorylation

*DCMU is 3-(3,4-dichlorophenyl)-1,1-dimethylurea; DCCD, dicyclohexylcarbodiimide; FCCP, cyanide-*p*-trifluoromethoxyphenylhydrazone; DNP, 2,4-dinitrophenol.